Principal Investigator: Dr. Annette Gabaldon, Biology 

The objective of this study is to understand the effects of dietary hempseed (Cannabis sativa L.) ingestion on growth patterns, body composition, bone mineral density, and gut microbiota diversity in female C57BL/6J mice. Hempseed is a nutrient-dense food which contains high amounts of protein, carbohydrate, fiber, lipids, vitamins, minerals, and phytochemicals, but its use as a dietary aide is controversial in the U.S. due to the presence of cannabinoids present in small amounts. The oil from cold-pressed hempseed is mostly polyunsaturated and 

rich in Omega-3 and Omega-6 fatty acids. The pressed cake is rich in proteins and carbohydrate. Hempseed oil and seeds are beginning to appear in the U.S. market for human consumption, but its use in agricultural animal feed has not gained approval from the FDA. Most of the research on hempseed nutritional properties and health benefits to animals has come from regions where it is a major gran, such as China, Canada, Australia, Italy, and France. Here, we will investigate the influence that dietary hempseed has on growth parameters and intestinal microbiota diversity in young female mice. Forty mice will be randomly divided into four groups: control diet (CON, no hempseed), 5% hempseed in deity (HS5), 10% hempseed in diet (HS10), and 20% hempseed in diet (HS20).

The individual groups of mice will be fed their respective diets daily from ages five to 30 weeks and growth parameters will be evaluated at monthly intervals. Body composition analysis will be performed using dual energy x-ray absorptiometry (DEXA) scanning, which reports lean mass, fat mass, bone area, bone mineral content, and bone mineral density. Somatometric measurements will include body mass, length, and surface area. At bi-weekly intervals, the mice will be placed singly into metabolic cages for measurement of food intake and collection of feces for microbiota diversity testing by colony forming unit (CFU) assay. Endpoint measurements at 30 weeks of age will include blood plasma total antioxidant capacity, visceral organ component analysis, and DEXA scan on selected individual skeletal bones which will then be tested for mechanical strength properties.

This is a new area of ICR research, but it complements well two ongoing ICR pilot projects. Study 1 is investigating the influence of hempseed supplementation on probiotic growth and synthesis of secondary metabolites in cultured Lactobacillus strains. Study 2 is evaluating new bone formation by cultured human osteoblast (HOB) cells in the presence of estrogen and endocannabinoids (2-AG and anandamide). These studies will help us to gain a better understanding of the functional significance of industrial hempseed and cannabinoids to human nutrition and health.